A Watershed Approach to Wetland Management in the Lake Superior Basin

Land and Water Conservation Department
Douglas County, Wisconsin
May 2016
Table of Contents

Acknowledgements ii
List of Figures iii
List of Tables v

Executive Summary

Project background
Development of watershed approach for wetland management 1
Community engagement 2
Prioritization process 3

Lake Superior Basin Description
Study area 6
Ecological Landscapes and Land Type Association 7
Watersheds and rivers 13
Red clay plain 14
Land cover and land use 15

Current and historic wetlands
Wetland functional assessment 17
Physical/chemical functions 19
Habitat functions 25
Wetland restoration potential: potentially restorable wetlands (PRWs) 32
Interpreted pour points 33
PRW catchments 34
Ditches and drainage paths 35
Potentially restorable stream reaches 37
Wetland loss 40
Open land cover 42
Restoration and preservation priorities 43

Recommendations for implementing a watershed approach to wetland management 44

Literature cited 47
Acknowledgements

Watershed Planning Committee Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Lou Bergman</td>
<td>Douglas County Board of Supervisors</td>
</tr>
<tr>
<td>David Conley</td>
<td>Douglas County Board of Supervisors</td>
</tr>
<tr>
<td>Dan Corbin</td>
<td>Douglas County Board of Supervisors</td>
</tr>
<tr>
<td>Sue Hendrickson</td>
<td>Douglas County Board of Supervisors</td>
</tr>
<tr>
<td>Tom Johnson</td>
<td>Douglas County Board of Supervisors</td>
</tr>
<tr>
<td>Greg Kessler</td>
<td>Wisconsin Department of Natural Resources</td>
</tr>
<tr>
<td>Jason Laumann</td>
<td>Northwest Regional Planning Commission</td>
</tr>
<tr>
<td>Steve LaValley</td>
<td>Wisconsin Department of Natural Resources</td>
</tr>
<tr>
<td>Mark Liebaert</td>
<td>Douglas County Board of Supervisors</td>
</tr>
<tr>
<td>Darienne McNamara</td>
<td>City of Superior SAMP</td>
</tr>
<tr>
<td>Diane Nelson</td>
<td>City of Superior Environmental Services</td>
</tr>
<tr>
<td>Nick Pristash</td>
<td>Douglas County Fish & Game League</td>
</tr>
<tr>
<td>Steve Rannenberg</td>
<td>Douglas County Planning & Zoning Department</td>
</tr>
<tr>
<td>Tom Rendulich</td>
<td>Village of Oliver</td>
</tr>
<tr>
<td>Rachael Shetka</td>
<td>Enbridge Energy</td>
</tr>
<tr>
<td>Alf Sivertson</td>
<td>Mitigation banker</td>
</tr>
<tr>
<td>Terry White</td>
<td>Douglas County Board of Supervisors</td>
</tr>
<tr>
<td>David Zentner</td>
<td>Izaak Walton League</td>
</tr>
</tbody>
</table>

Technical Advisory Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane Anklam</td>
<td>Douglas County Extension</td>
</tr>
<tr>
<td>Tom Bernthal</td>
<td>Wisconsin Department of Natural Resources</td>
</tr>
<tr>
<td>Mike Gardner</td>
<td>Northflow LLC</td>
</tr>
<tr>
<td>Steve LaValley</td>
<td>Wisconsin Department of Natural Resources</td>
</tr>
<tr>
<td>Nick Miller</td>
<td>The Nature Conservancy</td>
</tr>
<tr>
<td>Mary Munn</td>
<td>MLM Consulting</td>
</tr>
<tr>
<td>Erin O’Brien</td>
<td>Wisconsin Wetlands Association</td>
</tr>
<tr>
<td>Sue O’Halloran</td>
<td>Watershed Planning Consultant</td>
</tr>
<tr>
<td>Andy Robertson</td>
<td>St. Mary’s University of Minnesota</td>
</tr>
<tr>
<td>Bill Sande</td>
<td>US Army Corps of Engineers</td>
</tr>
<tr>
<td>Kevin Stark</td>
<td>St. Mary’s University of Minnesota</td>
</tr>
</tbody>
</table>

Douglas County Land Conservation Committee

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Mark Liebaert</td>
<td>Douglas County Extension</td>
</tr>
<tr>
<td>Vice Chair</td>
<td>Sue Hendrickson</td>
<td>Wisconsin Department of Natural Resources</td>
</tr>
<tr>
<td>Member</td>
<td>Rae Ann Anderson</td>
<td>Larry Luostari</td>
</tr>
<tr>
<td>Member</td>
<td></td>
<td>Amy Colby</td>
</tr>
<tr>
<td>Citizen Member</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Douglas County Board of Supervisors

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Douglas Finn</td>
<td></td>
</tr>
<tr>
<td>Vice Chair</td>
<td>Keith Allen</td>
<td></td>
</tr>
<tr>
<td>County Clerk</td>
<td>Susan Sandvick</td>
<td></td>
</tr>
<tr>
<td>County Administrator</td>
<td>Andy Lisak</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Situation map developed by Douglas County Watershed Planning Committee

Figure 2. Landscape criteria and prioritization process developed by Douglas County Watershed Planning Committee

Figure 3. Study area defined as the Lake Superior Basin portion (DC LSB) is outlined in dark purple.

Figure 4. Ecological Landscape Units within the DC LSB

Figure 5. Land Type Associations (LTAs) within DC LSB.

Figure 6. Hydrologic Units (i.e., watersheds & sub-watersheds) and major rivers and streams in the study area.

Figure 7. The red clay plain (orange shading) within the study area (outlined in purple). This is defined by the boundaries of the Douglas Lake-Modified Till Plain, a Wisconsin Land Type Association (LTA) (WI DNR 1999).

Figure 8. Land cover classes in the Douglas County Western Great Lakes Coastal Change Analysis Program (C-Cap) 2010 Land Cover

Figure 9. Land cover / land use in the Lake Superior Basin of Douglas County as of 2008-10. (Open / Impervious Lands analysis layer created by Community GIS Services Inc.).

Figure 10. Cover page of the Lake Superior Basin, Douglas County, WI. Map Book

Figure 11. Wetlands with moderate or high function for surface water detention.

Figure 12. Wetlands with moderate or high function for stream-flow maintenance (SM).

Figure 13. Wetlands with moderate or high function for shoreline stabilization.

Figure 14. Wetlands with moderate or high function for sediment retention.

Figure 15. Wetlands with moderate or high function in nutrient transformation

Figure 16. Wetlands with moderate or high function for carbon sequestration.

Figure 17. Wetlands with moderate or high function for amphibian habitat.

Figure 18. Wetlands with moderate or high function for fish habitat.

Figure 19. Wetlands with moderate or high function for other wildlife habitat.

Figure 20. Wetlands with moderate or high function for shorebird habitat.

Figure 21. Wetlands with moderate or high function for migratory bird habitat.

Figure 22. Wetlands with moderate or high function for waterfowl and water bird habitat.

Figure 23. Wetlands that function as woodcock habitat.

Figure 24. General distribution of PRWs (i.e., potential reestablishment sites) (red polygons) in the DC LSB. The yellow line indicates the clay plain boundary for the purposes of this assessment; the clay plain is to the north of this line. Different methods were employed to define PRWs in the clay plain vs outside of the clay plain.

Figure 25. Interpreted PRW pour points (red) in the DC LSB
List of Figures (Continued)

Figure 26. PRW representative catchments (green polygons) created to represent catchments of viable or possibly viable PRW polygons in the clay plain portion of the DC LSB. These were created from a 10-meter Digital Elevation Model (DEM).

Figure 27. General distribution of ditches (yellow lines) in the DC LSB. Note: some of these “ditches” are likely relatively shallow and include some semi-natural drainage paths that have been enhanced in order to reduce surface ponding.

Figure 28. Ground view of shallow, parallel agricultural ditches (indicated by white arrows) draining to nearby roadside ditch

Figure 29. Ground view of roadside ditch conveying water during spring snow melt in April 2014. The shallow agricultural ditches (shown in Figure 8) are seen in the upper left of this photo; they drain into this roadside ditch.

Figure 30. General distribution of potential restorable stream reaches (PRSRS) (dark red) identified in the Douglas County, Lake Superior Basin.

Figure 31. Ground–level view of a grazed riparian zone along an intermittent stream. Notice some hummocks created by livestock hooves (process referred to as “pugging”). Shown here during spring snow melt (April 2014).

Figure 32. Aerial view of the same grazed riparian area of an unnamed perennial stream identified as a PRSR (maroon line) in April 2013. The above photo was taken from the road facing the south (upstream in this north flowing stream). Notice the drainage ways (yellow lines) coming into the stream from the left side of the photo.

Figure 33. Ground-level view of a grazed stream riparian zone. Notice the small stream banks affected by livestock. Photo taken in July, 2014.

Figure 34. Aerial view of a grazed stream riparian zone during April, 2013. This segment was identified as a PRSR (maroon line). In this case, the stream is identified as an unnamed perennial stream in the WDNR Hydro data. The photo in Fig. X was taken from the road facing north (towards the top of this figure).

Figure 35. Map of the percent wetland loss in watersheds (HUC 12) in the Lake Superior Basin of Douglas County, WI.

Figure 36. Open land cover (percentage) in each subwatershed (HUC 14) in Lake Superior watersheds, Douglas County, WI.
List of Tables

Table 1. Calculation of wetland loss for HUC 12 watersheds, Lake Superior Basin, Douglas County, WI.

Table 2. List of Lake Superior Basin HUC 12 watersheds (Douglas County) with greater than 15% wetland loss, number of subwatersheds with more than 30% open land and total number of subwatersheds within each watershed.
Executive Summary

The watershed-based plan for wetland management developed for the Lake Superior Basin of Douglas County utilizes the best available scientific information to identify watersheds that indicate high vulnerability to increased surface water runoff due to large storm events, recommends actions to reduce this risk, and is consistent with community land use goals. This plan presents an opportunity to work with landowners, both public and private, to implement land management practices that will maintain a strong agricultural community, improve watershed health, reduce the risks associated with flooding and encourage economic growth and development. A primary goal of this plan is to enable Douglas County stakeholders to provide input into the location of future wetland mitigation sites that will improve watershed health within the Lake Superior basin and improve the overall resiliency of Douglas County communities to climate change. Through this process watersheds demonstrating the highest risk of increased runoff have been identified and would be the focus of future funding for wetland mitigation projects including restoration, preservation, enhancement, riparian buffers and land conservation management activities.

The Douglas County Lake Superior Watershed Planning committee met over an 18 month period to learn about watershed processes, wetland functions, wetland mitigation regulations and other land use issues. A technical advisory committee provided input on the development of the wetland functional analysis for the Lake Superior basin. The final recommendations of this group are compiled in wetland management recommendations for the location of future projects that meet watershed needs and are consistent with community land use goals.

Based on the criteria and prioritization process developed by the Watershed Planning Committee, the watersheds (HUC12) with the largest amount of wetland loss and subwatersheds (HUC14) with greater than 30-40% open land cover have been listed as the highest priority for wetland restoration and preservation. Additional site-level criteria will be used to evaluate parcel suitability and recommendations will be finalized and approved by appropriate entities. Sites meeting the identified criteria will be eligible for wetland restoration and protection projects as funding becomes available. Public and private lands that meet the criteria for either restoration or preservation will be compiled and utilized to develop a request for landowner participation. A listing of landowners who may be interested in developing wetland projects on their land will be developed.

For wetland restoration, site-level criteria will include, at a minimum, all identified potentially restorable wetland areas that:

- are located on or adjacent to transitional agricultural land
- have identified pour points and catchments that intersect highways and roads
- have a direct hydrologic connection to streams and rivers
- are adjacent to current wetlands with significant surface water detention function
- are adjacent to public land currently managed for conservation and/or preservation of unique habitats

For wetland preservation, site-level criteria will include, at a minimum:

- Current wetlands with moderate to high function for storm water detention (SWD), especially in the headwaters and floodplain areas in all Lake Superior Basin watersheds of Douglas County.
• Current wetlands adjacent to public land currently managed for conservation and/or preservation of unique habitats

Additional priorities for restoration include watersheds within which priority subwatersheds are located within. Additional preservation priorities include headwater and floodplain wetlands. Several key land conservation and management strategies have been identified that should be implemented to address the watershed goal of reduction in surface water runoff. They include:

• Managing timber harvests to maintain a minimum of 40% forest cover in watersheds (HUC 14)
• Implementation of wetland preservation and restoration projects in priority subwatersheds and the watersheds within which they are located.
• Implementation of stream and riparian/floodplain restoration and protection projects in priority locations identified as potentially restorable stream reaches.

Farmland preservation has community and economic significance for Douglas County and conservation of existing farmland is an important consideration when evaluating potential wetland restoration sites. Historic information shows a pattern of smaller wetlands on the landscape that provided surface water retention at multiple locations in the drainage network. This supports the concept of smaller restoration sites that could potentially be located adjacent to current active agricultural areas rather than converting the farmland itself. Wetland restoration projects in the region have demonstrated that transitional agricultural areas have a high restoration potential when surface water drainage patterns are re-established. This should be an alternative approach to the current practice of developing large wetland mitigation banks on farmland that results in a cumulative loss of agricultural land.

In order to address the watershed issue of increased surface water runoff the land management strategies recommended in this watershed-based plan have been approved by the Land and Water Conservation Committee as a goal to be added to the 2010-2020 Land and Water Resource Management Plan. In addition, recommendations from this plan will be coordinated with other Douglas County plans that include Comprehensive Land Use, Farmland Preservation, Hazard Mitigation and Forestry Planning. These strategies should be based on the currently available land cover/land use data and should be updated every five years.
A Watershed-Based Plan for Wetland Restoration and Conservation in the Lake Superior Basin of Douglas County, Wisconsin

Project Background

Development of watershed approach for wetland management

A watershed-based planning approach is a process for the identification of priority wetland preservation, restoration and enhancement opportunities that restore and maintain ecosystem functions and improve watershed health. This approach is described in the *Watershed Approach Handbook* (The Nature Conservancy and Environmental Law Institute 2014) and is defined as “an analytical process for making compensatory mitigation decisions that support the sustainability or improvement of aquatic resources in a watershed. It involves consideration of watershed needs and how locations and types of compensatory mitigation projects address those needs.” (ELI/TNC 2014). This watershed-based plan was developed for the Lake Superior basin within Douglas County, WI, and provides a framework for land and water management activities in the Lake Superior Basin (LSB) of Douglas County that addresses an identified priority watershed issue. This planning process incorporated input from stakeholders, natural resource managers and regulators in order to identify areas within the Lake Superior basin where wetland restoration and preservation projects could be established to address watershed needs and meet community goals. This plan was developed to meet federal and state regulatory requirements for wetland mitigation; provide local input into the location of future wetland restoration and mitigation projects in the county; and provide direction for those planning projects that impact wetlands in the county.

Land use changes and loss of wetlands in LSB watersheds impacts Lake Superior freshwater resources by reducing water storage capacity and increasing the volume and velocity of runoff. This contributes to flashy stream flow conditions that erode and further incise stream channels, undercut banks and create turbidity and sedimentation problems. Severe storm events in May and June, 2012 resulted in flooding and significant damage to infrastructure in Douglas County and the City of Superior. Projected increases in the frequency of large storm events due to climate change are likely to add to the existing problems of erosion, sedimentation in coastal wetlands, flooding and flood-related infrastructure damage (Wisconsin’s Initiative on Climate Change Impacts, 2011). Strategic wetland protection and restoration can help to regulate stream flows, reduce floods and flood damages, and remove sediments and pollutants from stormwater runoff.

In addition to these watershed runoff issues, Douglas County citizens had expressed concern regarding the lack of input into the siting of wetland mitigation projects in the county. Douglas County recently completed their Comprehensive Land Use Plan (2010-2020) which describes future land use plans for each of the municipalities in the county. While the county has been a focus area for wetland mitigation projects there has been a lack of communication with local governments that is needed to maintain consistency with local land use plans. This watershed-based plan was developed to address both the environmental issues and community concerns described.

Based on the best available information, this plan identifies watersheds that indicate high vulnerability to increased surface water runoff due to large storm events, recommends actions to reduce this risk, and maintains consistency with community land use goals. However, *while recommended actions are*
targeted at vulnerable watersheds they should be considered to be beneficial in all Lake Superior watersheds regardless of their ability to aid in ‘slowing the flow’ of surface water on the landscape. This plan presents an opportunity to work with landowners, both public and private, to implement land management practices that will maintain a strong agricultural community, improve watershed health, reduce the risks associated with flooding and improve the overall resiliency of Douglas County communities to climate change.

As this plan was developing over the past two years, the State of Wisconsin In-Lieu Fee (ILF) Program was initiated as a new option for mitigating impacts of wetland loss (WDNR 2014). As part of the state ILF Program Instrument, a Compensation Planning Framework (CPF) was developed for each major watershed. The Douglas County portion of the Lake Superior Basin contains two major watersheds, or hydrologic unit codes (HUC): the St. Louis River and the Beartrap-Nemadji (HUC 8). Information compiled for the CPF identifies trends in permitted wetland loss from 2008-2012 in these watersheds. This document also identifies goals and objectives for the ILF program in these Service Areas and Recommendations include the restoration and enhancement of specific wetland types including floodplain forests, wooded swamps, shrub-carr and alder thicket swamps, sedge meadows, ephemeral wetlands, Great Lakes Ridge and Swale Wetlands, interdunal wetlands and open and coniferous bogs. This information further supports the need for a watershed approach to wetland planning in Douglas County.

Community engagement

Lake Superior Basin stakeholders participated in planning meetings over an 18-month period in order to identify watershed needs, discuss community issues regarding land use and develop a process for input into the siting of future wetland projects (Wilkens 2013). An engagement strategy called “concept mapping” was incorporated in the initial phase of this process and was developed from stakeholder interviews conducted prior to the first watershed planning meeting. The original situation map was edited by the stakeholders to assure that the final version represented their concerns regarding wetland mitigation in Douglas County (Fig.1).
This planning committee met eight times over an 18 month period to learn about watershed processes, wetland functions, wetland mitigation regulations and other land use issues. In addition, a technical advisory committee was convened that included wetland and soil scientists, landscape spatial analysts and natural resource regulators to provide input on the development of the wetland functional analysis for the Lake Superior basin. The final recommendations of this group are compiled in the landscape prioritization for watershed-based planning (Fig.2) that describe land cover characteristics and priorities for the location of future projects that meet watershed needs and are consistent with community land use goals.

Prioritization process

The initial step was the ranking of major watersheds (HUC 12) based on historic wetland loss, or the loss of wetland acreage through conversion to other land uses. The watersheds with a higher amount of wetland acreage loss (relative to the other Lake Superior watersheds) received the highest ranking. The next step in the prioritization process included analysis of the landscape-level information at the sub-watershed (or HUC 14) scale. Subwatersheds showing land use changes resulting in greater than 40% acreage of open land were identified as a high priority. The “open land” category includes impervious surfaces, 16yr. age class forest stands and agricultural land.
Surface water detention was one of thirteen wetland functions assessed through the geospatial analysis. Within subwatersheds (HUC 14), wetlands having a moderate or high function for surface water detention were identified as high priority for wetland preservation. The potentially restorable wetlands were identified as high priority for wetland restoration. Agricultural land is rated as a low priority for wetland mitigation projects to reflect the community value of farmland preservation that is described in the town future land use plans. Transitional agricultural areas have been identified as areas that are either marginal for production, not actively farmed and/or returning to native vegetation. Transitional agricultural areas are a high priority for wetland restoration. Discussions with agricultural producers, who represent one of the largest private landowner groups in the county, has demonstrated an interest in wetland projects using small wetlands on both transitional and working farmland in order to both restore lost wetland functions and provide land conservation practices to reduce soil erosion and protect water quality. Small wetland restoration projects developed across a specific area to form a wetland complex would restore a more historically accurate landscape and has been identified as important by both resource managers and agricultural landowners.

The watershed-based approach developed through this project emerged from a pilot project on one watershed in the Lake Superior Basin of Douglas County, the Middle River. The criteria and prioritization process developed for the Middle River watershed was recommended for submission to the Land Conservation committee where it was approved for application on the other Lake Superior Basin watersheds. This was the first step in the process of integrating the assessment results into local plans and policies. A digital Map Book was created for the Middle River using Adobe Pro software watershed and
was expanded to include the Lake Superior Basin in Douglas County. The Map Book depicts land cover and information from the wetland functional assessment for surface water detention.

The information in the next sections are primarily excerpted from the final report submitted to Douglas County, *A Watershed Framework for the Assessment of Wetland Services in Douglas County, Wisconsin* developed by Geospatial Services of St. Mary’s University of Minnesota (Stark and Robertson 2014). They describe the Lake Superior Basin landscape, wetland functional assessment, potentially restorable wetlands, synthetic flow network and potentially restorable stream reaches.
Lake Superior Basin Description

Study Area

The study area for this project is the Lake Superior Basin portion of Douglas County (DC LSB) (Fig. 3). The Lake Superior Basin (LSB) of northern Douglas County contains geologically young red clay deposits left during the last glacial period that are highly erodible and prone to extensive mass wasting along stream banks, tributaries, and intermittent drainages (Verry and Kolka 2003). The study area covers 765.4 mi² of Douglas county, or just over half of the county’s total area.

Figure 3. Study area defined as the Lake Superior Basin portion of Douglas County, Wisconsin, approximately the northern half of the county. The study area (DC LSB) is outlined in dark purple.
Ecological Landscapes & Land Type Associations

The study area is comprised of three ecological landscape units, the Superior Coastal Plain, the Northwest Sands and the Northwest Lowlands (Fig. 4).

![Ecological Landscape Units within the Lake Superior Basin, Douglas County.](image)

Figure 4. Ecological Landscape Units within the Lake Superior Basin, Douglas County.

Ecological Landscape Units are described by the Wisconsin DNR as regions within Wisconsin with similar ecology and management opportunities (WDNR 2013). Within each of these Ecological Landscape Units are several Wisconsin Land Type Associations (LTAs) (WDNR 1999) (Fig. 5). These LTAs provide a more detailed description of the land cover, geology and landforms for each unit. LTAs are recommended for forest, area-wide, or watershed-level planning and analysis scales (map scale ranges of 1:250,000 to 1:60,000). These ecological units contain similar patterns in their: 1) potential natural plant communities; 2) soils; 3) hydrologic function; 4) landform and topography; 5) lithology; 6) climate; and 7) natural processes (e.g., nutrient cycling, productivity, successional patterns, and natural disturbance regimes such as flooding, wind, or fire). LTAs within the DC LSB are depicted in Fig. 5. The following pages describe each of the Ecological Units and the LTAs within contained within them.
Figure 5. Land Type Associations (LTAs) within the Lake Superior Basin, Douglas County.

Superior Coastal Plain
Approximately the northern half of the study area falls within the Superior Coastal Plain. This ecological landscape is generally rolling to flat topography with clay soils; primarily agriculture and mixed hardwood and spruce-fir forest with high gradient streams (Merryfield 2000). The following information on the Ecological Unit descriptions (climate, bedrock, geology & landforms, soils, hydrology, and current land cover) is taken directly from WI DNR (2014).

Climate: Typical of northern Wisconsin, though conditions are somewhat moderated by the proximity to Lake Superior; mean growing season of 122 days, mean annual temperature is 40.2 deg. F, mean annual precipitation is 32 inches, and mean annual snowfall is 87.4 inches. Cool summers, deep snows (including lake effect snows), high humidity, fog, mist, wave spray, currents, ice, and strong winds (e.g., along exposed coastlines, where blow-down events are frequent) affect parts of the Ecological Landscape, especially near Lake Superior. Some areas near Lake Superior support grass-based agriculture (18.5% of the Ecological Landscape). Areas away from Lake Superior have a shorter growing season and forests become more important than agriculture.
Bedrock: Late Precambrian sandstones are exposed and form cliffs and ledges along the northern edge of the Bayfield Peninsula and on the shores of the Apostle Islands. Igneous rocks (e.g., basalts) form the underpinnings of several waterfalls (e.g., Big Manitou Falls on the Black River in Douglas County).

Geology & Landforms: The Bayfield Peninsula is hilly, as are some of the Apostle Islands. Both are covered by glacial tills. The level plains on either side of the Bayfield Peninsula slope gently toward Lake Superior. They are dissected by many deeply incised streams and several large rivers that generally flow from south to north toward Lake Superior (e.g., Middle River). Sand spits, often enclosing lagoons and wetlands, are well-developed in the Apostle Islands archipelago and at river mouths; some of the larger spits are several miles long.

Soils: Important soils include deep, poorly-drained reddish lacustrine clays on either side of the Bayfield Peninsula. The clay deposits include lenses of sand or coarse-textured till; these areas are especially erosion-prone when they are cut by streams. The tills covering the Bayfield Peninsula and Apostle Islands are variable in composition, but include clays, silts, loams and sands. Organic soils are limited in extent, occurring mostly in association with the peatlands on the margins of the coastal lagoons and to a lesser extent in basins underlain by impermeable tills.

Hydrology: Lake Superior has had an enormous influence on the climate, landforms, soils, vegetation, and economy of the Superior Coastal Plain. Freshwater estuaries are present along the coast. Inland lakes are rare, but lagoons, some of them quite large, occur behind the coastal sandpits. Important rivers in this unit within DC LSB include the St. Louis, Nemadji, Amnicon, and the Bois Brule. Coldwater streams originate in the aquifers at the northern edge of the Northwest Sands in Bayfield County and flow north across the Superior Coastal Plain before emptying into Lake Superior. Many of the streams flowing across the clay plain suffered severe damage to their banks and beds during the era of heavy logging in the late 19th and early 20th centuries. Some of them have not yet recovered and their slumping banks continue to dump sediments into the main channels, and ultimately, into Lake Superior. Water (and soil) management can be challenging in this Ecological Landscape (WI DNR 2014).

Current Land Cover: Aspen-dominated boreal forests are abundant on the clay plains to the west and east of the Bayfield Peninsula. In some areas white spruce, balsam fir, and white pine (these were the dominant canopy trees prior to the Cutover) are now common understory species, or are even colonizing abandoned pastures. Older stands of boreal conifers still occur in a few places, such as the City of Superior Municipal Forest. Forest fragmentation is significant on the clay plain owing to the interspersion of forests with fields and pastures. Northern hardwood and hemlock-hardwood forests occur on the Apostle Islands and include old-growth remnants. Dry forests of pine and oak are scarce in this Ecological Landscape but they do occur on some of the sandspits associated with coastal estuaries. The largest coastal wetlands cover thousands of acres, and these are composed of complex vegetation mosaics that include coniferous and deciduous forests, shrublands, wet meadows and marsh. Large wetlands in the interior of the Superior Coastal Plain include the Bibon Swamp, a huge wetland of almost 10,000 acres along the White River on the southern edge of the Ecological Landscape, and Sultz Swamp, a peatland perched high on the northern Bayfield Peninsula. An extensive complex of wetlands of variable structure occurs on poorly drained red clays in and around the City of Superior.
Relevant LTAs: LTAs within the Superior Coastal Plain in the DC LSB are the Douglas Lake-Modified Till Plain and the Carlton Plains.

Significant Ecological Places
- Conservation Opportunity Areas (COAs): Pokegama-Nemadji Wetlands, Brule Boreal Forest, Bibon Swamp
- State Natural Areas (SNAs): Brule River Boreal Forest, Bibon Swamp, Nemadji River Floodplain Forest, Pokegama Carnegie Wetlands, Big Manitou Falls and Gorge, Dwight’s Point and Pokegama Wetlands, and Bear Beach.
- Important Bird Areas (IBAs): Bibon Swamp, Wisconsin Point

Land Legacy Places: Bois Brule River, Middle River Contact, Nemadji River and Wetlands, St. Loui Estuary and Pokegama Wetlands, Wisconsin Point, Manitou-Black River Falls

Northwest Sands Ecological Landscape
A fairly small portion of the study area in the southeast corner falls within this ecological landscape unit. The following information on the Ecological Unit descriptions (climate, bedrock, geology & landforms, soils, hydrology, and current land cover) is taken directly from WI DNR (2014).

Climate: Mean annual temperature (41.30 F) is similar to other northern Ecological Landscapes. Annual precipitation averages 31.4 inches and annual snowfall about 61 inches, also similar to other northern Ecological Landscapes. The growing season is short and averages 121 days. Although there is adequate rainfall to support agricultural row crops such as corn, the sandy soil and short growing season limit row crop agriculture, especially in the northern part of the Ecological Landscape.

Bedrock: Underlying bedrock at the southern edge of the Northwest Sands is Cambrian quartzose and glauconitic sandstone and silt-stone. In the northern portion, the bedrock is Precambrian basalt, lithic conglomerate, shale, and feldspathic to quartzose sandstone. Bedrock is covered with 100 to 600 feet of glacial drift (sand, gravel, and silt), with the thickest deposits in the northern half. No terrestrial bedrock exposures are known from this Ecological Landscape.

Geology & Landforms: This Ecological Landscape is the most extensive and continuous xeric glacial outwash system in northern Wisconsin. It has two major geomorphic components. One is a large outwash plain pitted with depressions, or "kettle lakes." The other component is a former spillway of Glacial Lake Duluth (which preceded Lake Superior) and its associated terraces. The spillway is now a river valley occupied by the St. Croix and Bois Brule Rivers. The hills in the northeast are formed primarily of sand, deposited as ice-contact fans at the outlet of subglacial tunnels. Lacustrine deposits (especially fine materials of low permeability such as clays) from Glacial Lake Grantsburg underlie Crex Meadows and Fish Lake Wildlife Areas, and are responsible for impeding drainage, leading to the formation of the large wetlands there.

Soils: Upland soils are typically sands or loamy sands over deeper-lying strata of sand, or sand mixed with gravel. These soils drain rapidly, leading to xeric, droughty conditions within the Ecological Landscape. Wetlands in low-lying depressions have organic soils of peat or muck.
Hydrology: This Ecological Landscape has significant concentrations of glacial kettle lakes, most of them seepage lakes, a well-developed pattern of drainage lakes, and several large wetland complexes. The lakes cover roughly 4.8% of the area of the Northwest Sands, the third highest percentage among ecological landscapes in Wisconsin. The headwaters of the St. Croix and Bois Brule rivers are here. Major rivers include the St. Croix, Namekagon, Yellow, and Totagatic. Springs and seepages are common along the Upper Bois Brule but local elsewhere.

Current Land cover: Land cover is a mix of dry forest, barrens, grassland, and agriculture, with wetlands occupying significant parts of the bed of extinct Glacial Lake Grantsburg, kettle depressions, and some river valleys. Within the forested portion, pine, aspen-birch, and oak are roughly equally dominant. The maple-basswood, spruce-fir, and bottomland hardwood forest types occupy small percentages of the Ecological Landscape’s forests. The open lands include a large proportion of grassland and shrubland. Emergent/wet meadow and open water are significant in the southern part of the Northwest Sands. There is very little row-crop agriculture.

Relevant LTAs: LTAs within the Northwest Sands ecological unit in the DC LSB are the Bayfield Level Barrens, Bayfield Rolling Outwash Barrens, Oula Washed Moraine, and the Upper Brule-St. Croix Valley.

Northwest Lowlands Ecological Landscape
Located in the southern portion of the study area, this ecological landscape unit covers nearly half of the study area. The following information on the Ecological Unit descriptions (climate, bedrock, geology & landforms, soils, hydrology, and current land cover) is taken directly from WI DNR (2014).

Climate: Typical of northern Wisconsin; the mean growing season is 122 days, mean annual temperature is 41.8 deg. F, mean annual precipitation is 30.6, and mean annual snowfall is 49 inches. The cool temperatures and short growing season are not adequate to support agricultural row crops; less than three percent of the land here is used for agricultural purposes and most of this is in the southern "hook" in Burnett County. The climate is favorable for forests, which cover almost 70% of the Ecological Landscape. The cool temperatures and short growing season, along with numerous and large acid peatlands, result in almost boreal-like conditions in parts of the Northwest Lowlands.

Bedrock: Bedrock outcroppings are rare except in association with the basalt ridge that follows the Douglas County fault line and forms part of the northern boundary of the Northwest Lowlands. Waterfalls, cliffs, bedrock glades, and rock-walled gorges are associated with this bedrock feature. Local, relatively small, exposures of sandstones and conglomerates occur in some of these gorges.

Geology & Landforms: The major landforms are ground and end moraines, with drumlins present in the southwestern portion. Topography is gently undulating. In the northern part of the Ecological Landscape many stream valleys run northeast-southwest in roughly parallel courses. This is caused by bedrock ridges that were created by harder strata of lava alternating with weaker sedimentary rocks; these were later tilted upward due to rifting and continental collision. This bedrock feature influences the surface topography of the Northwest Lowlands, especially where glacial deposits are thin.
Soils: Soils are predominantly loams, with significant acreages of peat deposits in the poorly drained lowlands. Major river valleys have soils formed in sandy to loamy-skeletal alluvium or in non-acid muck. Alluvial soils range from well drained to very poorly drained, and have areas subject to periodic flooding.

Hydrology: This Ecological Landscape occupies a major drainage divide, and contains the headwaters of many streams that flow north toward Lake Superior or south toward the St. Croix River system. Important rivers include the St. Croix, Black, Tamarack, Spruce, and Amnicon. Lakes are uncommon except in the heavily agricultural southernmost part of the Ecological Landscape in Burnett County. Impoundments, all fairly small, have been created by constructing dams on the Tamarack and Black rivers, and several creeks. The St. Croix River is fed by springs, spring ponds, and seepages.

Current Land Cover: The present-day forests remain extensive and relatively unbroken, occupying about 68% of the landscape. Forests consist mainly of aspen, paper birch, sugar maple, basswood, spruce and fir. Minor amounts of white pine, red pine and red oak are also present. Older successional stages are currently rare, as almost all of this land is managed as "working forests". The large undisturbed peatland complexes consist of mosaics of black spruce-tamarack swamp, muskeg, open bog, poor fen, shrub swamp, and occasionally, white cedar swamp. The St. Croix River corridor includes forested bluffs and terraces, which support communities unlike those found in most other parts of the Ecological Landscape. These include mesic maple-basswood forest, dry-mesic forests of oak or oak mixed with pine, black ash-dominated hardwood swamps, and numerous forested seeps. Less extensive areas of marsh and sedge meadow also occur along the St. Croix. In most of this Ecological Landscape minor amounts of land are devoted to agricultural and residential uses, and most of these land uses are concentrated along State Highway 35. The major exception to this pattern is the area that wraps around the south end of the Northwest Sands which is a mix of agricultural lands and scattered oak or oak-pine woodlots.

Relevant LTAs: LTAs within the Northwest Lowlands ecological unit in the DC LSB are the Pattison Moraines, Dairyland Moraines, and the Winneboujou Glacial Trust Hills.

- Significant Ecological Places (from Merryfield et al. 2000)
- Conservation Opportunity Areas (COAs): Northwest Lowlands Bogs
- State Natural Areas (SNAs): Belden Swamp, Erickson Creek Forest and Wetlands, Black Lake Bog
- Important Bird Areas (IBAs): none identified
- Land Legacy Places: Manitou-Black River Falls
Watersheds & Rivers

Watersheds are defined by the USGS’s National Hydrography Dataset (NHD) using a hierarchy of nested drainage areas defined. These drainage areas are represented by codes and referred to as Hydrologic Unit Codes or HUCs. The larger the number of digits in a HUC the smaller the area or more nested it is in the hierarchy of drainage areas. There are just two eight-digit HUCs that overlap the DC LSB, the St. Louis River 8-digit HUC which is the drainage area of the Pokegama and St. Louis Rivers near the city of Superior and the Bear Trap-Nemadji Rivers 8 digit HUC. This later HUC encompasses the remainder of the DC LSB. These HUCs are broken down further into 10-digit, 12-digit, down to 16-digit HUCs. Figure 6 displays 10-digit and 12-digit HUC boundaries in the DC LSB along with the primary rivers, such as the Nemadji, Amnicon, Middle, and Bois Brule Rivers and some creeks such as Balsam, Bardon, Bluff, Dutchman, and Smith creeks.

Figure 6. Hydrologic Units (i.e., watersheds & sub-watersheds) and major rivers and streams in the study area.
Red Clay Plain

An important feature in this study area and much of the Lake Superior Basin of Wisconsin is the lake clay plain (sometimes referred to as the red clay plain) consisting of “red clay” soils resulting from glacial till and glacial lake deposits. For this study, the technical committee agreed to define the clay plain using an ecological classification in Wisconsin’s Land Type Association GIS data. The Douglas Lake-Modified Till Plain land type association (LTA) is used to define the boundary of the clay plain, shown as a darker shaded area in the northern half of the study area (Figure 7). Red clay wetlands, those that are composed of a mixture of wet and dry red clay soils, are common here and this area is treated differently than the rest of the study area in terms of identifying potential wetland re-establishment sites and for determining some wetland functions because of the clay-dominant soils and the way they are treated in digital soils data (SURGO/NRCS).

Figure 7. The red clay plain (orange shading) within the study area (outlined in purple). This is defined by the boundaries of the Douglas Lake-Modified Till Plain, a Wisconsin Land Type Association (LTA) (WI DNR 1999).
Land Cover / Land Use

Pre-settlement Land Cover
Forest vegetation dominated the landscape in the study area prior to European settlement. The exact extent of former wetlands is not known, however two datasets provide some general indication of former wetland extent: Finley’s vegetation maps for each Ecological Landscape Unit in the study area (WDNR 2014) and the Wisconsin Economic Inventory (Bordner) Survey maps (Wisconsin Land Economic Inventory 1933).

Current Land Cover / Land Use
Multiple GIS data sources are available to define contemporary land cover/land use in Douglas County. Two of the highest resolution and most contemporary datasets include the Western Great Lakes Coastal Change Analysis Program (CCAP) (Fig. 8) data from 2010 and Community GIS Inc.’s Open/Impervious Land Analysis data (circa 2008-2010) (Fig. 9).

Figure 8. Land cover classes in the Douglas County Western Great Lakes Coastal Change Analysis Program (C-Cap) 2010 Land Cover
The Open/Impervious GIS dataset was one of several land cover datasets used to measure the proportion of open land and impervious surface within Douglas County. Open land describes land cover with limited or no forest cover and includes the following categories: 0-15 yr. age forest stands, agricultural areas, residential development, and impervious surfaces (Fig. 9) provides a brief description of each of the land cover/use categories. The transitional agriculture category was identified as areas where agricultural land is no longer being farmed and is ‘transitioning’ back to its former land cover.

Figure 9. Land cover / land use in the Lake Superior Basin of Douglas County as of 2008-10. (Open / Impervious Lands analysis layer created by Community GIS Services Inc.).
Current and historic wetlands

Wetland functional assessment

A geospatial analysis of current wetland functions and identification of potentially restorable wetlands was completed by St. Mary’s University of Minnesota (SMUMN) Geospatial Services (Stark and Robertson 2014). This included remotely-sensed information such as digital elevation models (DEMs), aerial photography, and other GIS datasets to predict the functions of current wetlands in the LSB. Locations of potential wetland restoration areas were developed through photointerpretation and geospatial data modeling. The full report of the methods and results of this analysis was submitted by SMUMN to Douglas County. This assessment also relied on best professional judgment of local and regional wetlands and soils experts. While there was some limited field investigation to confirm broad-scale wetland mapping information, the data are not intended to provide site-level specificity. However, the data can be used to better understand the present-day distribution of wetlands, identify which wetlands are predicted to be significant for performing certain ecological functions, and provide an initial assessment of locations to be considered for the wetland restoration.

The project utilized GIS data from the Wisconsin Wetland Inventory and National Wetlands Inventory, and enhanced the data by adding landscape and hydrologic wetland descriptors that are based on a classification system called Landscape Position, Landform, Water Flow Path and Water Body (LLWW) (Tiner 2011). With this enhanced wetland data, predicted wetland functions were applied based upon wetland characteristics contained within the geospatial database along with spatial relationships of the wetlands to each other and their surroundings. For a select group of ecological wetland functions, wetlands predicted to be significant for a given function were ranked as high or moderate using the best professional judgment of several wetland experts. A final GIS wetland dataset contains coded wetland characteristics for each wetland area (polygon) along with a ranking for each of the ecological functions examined in the project.

Wetlands perform a number of functions and are important in maintaining the overall health of the watersheds in which they are located. These functions can be categorized as physical and biological functions. An example of physical functions include providing areas for rainwater to pool during storm events (surface water detention) or areas where nutrients such as phosphorus can be removed by plants before entering streams and lakes (nutrient transformation). Examples of biological functions include amphibian, waterfowl and woodcock habitat. The analysis completed for the current wetlands in the Lake Superior Basin of Douglas County provides the best available information on wetlands that rank as medium or high for specific functions. Please note that since most wetlands perform more than one function, they have been ranked separately for each of the functions as having a medium or high score.

A description of wetland functions evaluated for the Lake Superior Basin of Douglas County with maps showing the location of the significant (moderate or high) functioning wetlands for each function can be seen on the following pages (Figs. 11-23). All current wetland functional data and potentially restorable wetland areas have been compiled on the Douglas County website and can be viewed at: www.douglascountywi.org. These on-line maps are high resolution and provide detailed information for each wetland. This degree of detail is difficult to view on the large scale maps in this document. A Watershed Map Book was developed utilizing Adobe Acrobat software to enable viewing of all land cover/land use and wetland information compiled for this project without the need for GIS software. The
Watershed Map Book contains several maps for each watershed (HUC 12) that includes the following information: aerial photo, land cover types, percentage of open land types, surface water detention wetlands, potentially restorable wetlands and historic wetland information from the 1933 Wisconsin Economic Land (Bordner) Survey (Fig. 10). This Map Book contains the high resolution information in a different viewing format and digital copies can be obtained by contacting the Douglas County Land Conservation Department.

Figure 10. Cover page of the Lake Superior Basin, Douglas County, WI. Map Book
Physical/Chemical Functions

Surface Water Detention (SWD): Wetlands trap and store surface water. Surface water can take the form of precipitation or, in colder climates, spring snow melt. The wetlands then release the water slowly over time through surface or underground hydrologic networks. From the human perspective, this process equates to lower peak flood levels. In fact, wetlands in a watershed can diminish and even desynchronize peaks flows. Generally, depressional wetlands that capture and store precipitation and runoff are significant for performing the function of surface water detention. They provide ground water recharge points and include wetlands found along stream and river floodplains, in lake basins, fringes, and islands.

![Figure 11. Wetlands with moderate or high function for surface water detention.](image)

The primary wetland function associated with reducing water runoff is *surface water detention* (SWD). Note that wetlands that demonstrate medium to high function for surface water detention are primarily found in the headwater and floodplain areas of many Lake Superior basin watersheds. These wetlands represent the highest priority for preservation in order to maintain the functions and services currently provided in Lake Superior Basin watersheds.
Stream-flow Maintenance (SM): Surface water maintenance is the ability of a watershed to keep water traveling through the drainage system. Wetlands that help maintain stream flow are those that contribute water to the interconnected conduits within a watershed. Wetlands providing highest surface water maintenance are headwater wetlands. Most other wetland types that provide surface water maintenance are through flow and outflow types, although in some cases isolated and inflow wetlands also provide this function to a moderate degree.

Figure 12. Wetlands with moderate or high function for stream-flow maintenance (SM)
Shoreline Stabilization (SS): Natural shoreline stabilization structures and vegetation prevent erosion or remediate erosion that has already occurred by binding soils. Vegetation and mixed vegetation along lake, river, stream, and pond shorelines prevent soil from being washed or blown away.

![Map of Wetlands with Moderate or High Function for Shoreline Stabilization](image)

Figure 13. Wetlands with moderate or high function for shoreline stabilization.
Sediment & Other Particulate Retention (SR): Wetlands that physically trap particles that affect water quality have sediment retention properties. In contrast to nutrient transformation which involves chemical processes, SR is a physical process where the suspended particles are filtered by the soil and plant roots. The removal of suspended particles helps to improve water clarity and help maintain cooler temperatures on cold water streams. Due to the physical nature of sediment retention LLWW is the primary system used to make SR determinations with the NWI vegetation classes and water regime also factoring into the process.

Figure 14. Wetlands with moderate or high function for sediment retention.
Nutrient Transformation (NT): Nutrient transformation refers to the natural chemical processes that remove or recycle compounds in the environment. In the case of wetlands, nitrates and phosphorous from agricultural runoff are the primary nutrients of concern. Wetlands performing this function are sinks for excess nutrients. The nutrients are prevented from moving further through the watershed through either storage or by wetland vegetation using the nutrients for their own life cycle.

Figure 15. Wetlands with moderate or high function in nutrient transformation.
Carbon Sequestration (CAR): Carbon sequestration occurs when wetlands act as carbon sinks through chemical and biological processes such as photosynthesis. Typically, wetlands performing carbon sequestration are vegetated to some degree. Therefore, NWI classifications become the major source of information in making determinations regarding carbon sequestration. Soil and water regime information are also important in determining whether a wetland functions at a high or moderate level for this function.

Figure 16. Wetlands with moderate or high function for carbon sequestration
Habitat Functions

Amphibian Habitat (AMH): Amphibians such as frogs, toads, and salamanders are commonly found in floating vegetation and wild rice. Some amphibian species require a variety of habitats for their life cycle, while others tend to stay in much wetter areas throughout their lives. Typically seasonally flooded to permanently flooded wetlands provide amphibian habitat. Shallower water habitats tend to be best for amphibians.

![Figure 17. Wetlands with moderate or high function for amphibian habitat](image-url)
Fish (FIS): Wetlands performing the function of fish habitat provide areas vital for various parts of their life cycle. Many organisms on which fish feed need wetlands to survive. Wetlands also provide spawning and nursery areas. Wetland plants provide cover essential to small and young fish avoiding predators. The shade provided by wetland trees and shrubs helps to maintain cooler water temperatures for cold water species.

Figure 18. Wetlands with moderate or high function for fish habitat.
Other Wildlife (OWH): General wildlife in this case includes mammals, reptiles, and songbirds. All vegetated wetlands, and only vegetated wetlands, perform this function to some degree. The size and whether there are multiple vegetation types in a complex determine the level at which a wetland complex is functioning for GHW. It needs to be emphasized that this function is dependent on wetland complexes that may be made up of many different interconnected wetlands types. In other words it is the size of the entire wetland complex that determines its level of function and not the size of the individual wetlands making up the complex.

Figure 19. Wetlands with moderate or high function for other wildlife habitat.
Shorebird Habitat (SHB): Birds including: herons, cranes, egrets, and sandpipers are shorebirds, and are commonly referred to as wading birds. They require shallow open water areas of lakes or ponds, sometimes mixed with emergent vegetation for feeding on invertebrates, fish, and amphibians. Nesting occurs on sandy beaches and bars and mudflats.

Figure 20. Wetlands with moderate or high function for shorebird habitat.
Migratory Bird Habitat (MBIRD)

This function is intended to identify wetlands that are predicted to act as significant stop-over locations for migratory birds during migration. Migratory birds are considered non-game birds that fly between summer breeding grounds and non-breeding wintering areas. During their migration, they must stop to feed and rest. Some areas are considered especially important as stop-over locations based on the availability of food, water, and shelter they provide to various migratory birds.

Figure 21. Wetlands with moderate or high function for migratory bird habitat.
Waterfowl & Waterbird Habitat (WBIRD)

Ducks, geese and swans are most commonly thought of as waterfowl, but a number of other types of birds, such as loons, coots and grebes also rely on similar habitats for survival. Their highly functioning habitat is typically associated in some way with open water. Depending on the species, habitats can range from large open littoral areas, to forested ponds and streams.

Figure 22. Wetlands with moderate or high function for waterfowl and water bird habitat.
Woodcock Habitat (WCK): Woodcock prefer a variety of habitats depending on time of day, activity, and season, but generally prefer younger forested areas for nesting and brood rearing and scrub shrub with saturated soils for feeding.

Figure 23. Wetlands that function as woodcock habitat.
Wetland restoration potential: Potentially Restorable Wetlands (PRWs)

The best opportunities for restoring wetlands in the LSB have been identified in the Potentially Restorable Wetland (PRW) information for Douglas County. GIS analysts compiled the relevant datasets and interpreted this information using their best professional judgement and technical advisory committee input to determine PRW locations and extent. PRWs are areas where a preponderance of evidence exists indicating the area was once a wetland or at minimum contained more wetland area, but may have since experienced vegetative and/or hydrologic modification. These areas are considered to have a likelihood of supporting wetland development given specific hydrologic or land management changes.

Figure 24. General distribution of PRWs (i.e., potential reestablishment sites) (red polygons) in the DC LSB. The yellow line indicates the clay plain boundary for the purposes of this assessment; the clay plain is to the north of this line. Different methods were employed to define PRWs in the clay plain vs outside of the clay plain.
Interpreted Pour Points

Pour Points (interpreted) are the locations where the PRWs are most likely to drain into the flow network (synthetic flow network) developed for this project. They were developed through the examination of the top 300 largest PRW areas (polygons) in the study area. Only areas that showed evidence of ditching or other wetland draining practices (hydrologic alteration) are shown in the map. In many cases multiple pour points were digitized (interpreted) for a PRW as the PRW often appeared to likely drain in multiple directions. Generally, they were found to be most prevalent in agricultural areas, especially in the eastern portion of the clay plain within the DC LSB. This is to be expected because this area has a higher concentration of agriculture and ditching.

Figure 25. Interpreted PRW pour points (red) in the LSB of Douglas County.
PRW Catchments

Catchments were created from the pour points described above. ESRI’s Spatial Analyst (Watershed Tool) was run to create the catchments for each of the pour points. The catchments are only as accurate as the Digital Elevation Model (DEM) from which they are based, but provide a starting point for narrowing down areas for wetland restoration opportunities. These might be incorporated as an input to a future prioritization model that would incorporate other, additional criteria that would provide some guidance on which PRWs (the polygons, the pour points, and the resultant catchments) might be of the highest priority in a watershed planning context.

Figure 26. PRW representative catchments (green areas) created to represent catchments of viable or possibly viable PRW polygons in the clay plain portion of the DC LSB. These were created from a 10-meter Digital Elevation Model (DEM).
Ditches & Drainage Paths

The ditches and drainage paths were found to be most concentrated in the eastern portion of the clay plain portion of the study area. They often drain agricultural fields to the nearest roadside ditch or stream. An attempt was made to characterize these ditches & drainage paths in order to differentiate between channelized ditches and natural or semi-natural drainage paths. In some cases it was found that drainages might even be intermittent streams not captured in the WI DNR 24K hydro flow line data.

Figure 27. General distribution of ditches (yellow lines) in the DC LSB. Note: some of these “ditches” are likely relatively shallow and include some semi-natural drainage paths that have been enhanced in order to reduce surface ponding.
Some examples of ditching can be seen in the photos in Figures 28 and 29.

Figure 28. Ground view of shallow, parallel agricultural ditches (indicated by white arrows) draining to nearby roadside ditch.

Figure 29. Ground view of roadside ditch conveying water during spring snow melt in April 2014. The shallow agricultural ditches (shown in Figure 28) are seen in the upper left of this photo; they drain into this roadside ditch.
Potentially Restorable Stream Reaches (PRSRs)

Potentially restorable stream reaches (PRSRs) were generally found to be more common in the agricultural areas of the clay plain in the study area and especially more common on first order streams. The general distribution of these stream reaches are indicated in Figure 30. Additional information regarding the composition of different riparian vegetation along these segments, evidence of grazing, and other information can be queried by data users. It is important to note that this dataset identifies an initial indication of riparian health based only on aerial photo interpretation (i.e., what can be detected in the aerial photo). This is primarily woody riparian vegetation density, land use, evidence of channelization, grazing in the riparian zone, etc. This layer does not identify channel incision or other river or stream morphological characteristics important in understanding erosion susceptibility.

Figure 30. General distribution of potential restorable stream reaches (PRSRs) (dark red) identified in the Douglas County, Lake Superior Basin.
An example of a perennial stream reach in the study area which has evidence of livestock grazing in the riparian zone is provided in a ground view in Figure 31 and an aerial view in Figure 32. In the PRSR data this stream reach’s riparian area was considered to have “no woody riparian vegetation” and the riparian zone was affected by active livestock grazing.

Figure 31. Ground–level view of a grazed riparian zone along an intermittent stream. Notice some hummocks created by livestock hooves (process referred to as “pugging”). Shown here during spring snow melt (April 2014).

Figure 32. Aerial view of the same grazed riparian area of an unnamed perennial stream identified as a PRSR (maroon line) in April 2013. The above photo was taken from the road facing the south (upstream in this north flowing stream). Notice the drainage ways (yellow lines) coming into the stream from the left side of the photo.
Another example of a grazed stream bank and riparian zone in a woodland area is shown as a ground-level view in Figure 33 and an aerial view in Figure 34.

Figure 33. Ground-level view of a grazed stream riparian zone. Notice the small stream banks affected by livestock. Photo taken in July, 2014.

Figure 34. Aerial view of a grazed stream riparian zone during April, 2013. This segment was identified as a PRSR (maroon line). In this case, the stream is identified as an unnamed perennial stream in the WI NDR Hydro data. The photo in Fig.33 was taken from the road facing north (towards the top of this figure).
Wetland loss

Estimates of wetland loss in Lake Superior watersheds were calculated utilizing the best available information that included the 2012 Wisconsin Wetland Inventory (WDNR) for current wetlands and the PRW estimates developed for Douglas County’s Lake Superior Basin through the Science Collaborative Project (O’Halloran 2014). Potentially restorable wetlands (PRWs) outside the clay plain have been defined by the Wisconsin DNR and the Science Collaborative Project. Historic wetlands are defined as the current wetlands plus the PRWs and were calculated following WDNR protocols (WDNR 2014). Figure 35 shows the percentage of wetland loss in each watershed (HUC 12) and Table 1 shows the calculations used to estimate the wetland acreage and percentage of wetland loss for these watersheds.

- The estimated historic wetland acreage was calculated by adding the current wetland acreage to the potentially restorable wetlands. (Historic wetlands = current + PRWs).
- The estimated percent historic wetland acreage was estimated by dividing the acreage of historic wetlands by total watershed acreage.
- The estimated percent wetland loss by watershed was estimated as the PRW acreage for the watershed divided by the total watershed acreage.

[Map of the percent wetland loss in watersheds (HUC 12) in the Lake Superior Basin of Douglas County, WI.]

Figure 35. Map of the percent wetland loss in watersheds (HUC 12) in the Lake Superior Basin of Douglas County, WI.
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
<th>Column 6</th>
<th>Column 7</th>
<th>Column 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 1: Calculation of wetland loss for HI wetlands, Lake Superior, Douglas County WI.
Open land cover

Open land is identified as agricultural, young forest (0-15 yrs. old) and impervious surfaces. Estimates of the percentage of open land cover in Lake Superior watersheds (2009) can be seen in Figure 36. The percentage of open land is depicted as less than 20% (dark green), 20-30% (light green), 30-40% (yellow) 40-50% (orange) and greater than 50% open land (red). The map shown in Figure 36 represents the land cover information seen in Figure 9 as a percentage of the total subwatershed acreage. For example, the subwatersheds shown as yellow have 30-40% of their land cover as open land. This data is utilized at the subwatershed (HUC 14) scale to prioritize areas for wetland restoration and preservation projects within the watersheds that have experienced the greatest amount of wetland loss.

Figure 36. Open land cover (percentage) in each subwatershed (HUC 14) in Lake Superior watersheds, Douglas County, WI.
Restoration and preservation priorities

A primary goal of this watershed-based plan is to enable Douglas County stakeholders to provide input into the location of future wetland mitigation sites that will improve watershed health within the Lake Superior basin. The prioritization process developed by the Douglas County Watershed Planning Committee, which uses the results of the wetland functional assessment and current data on landscape surface water hydrology, provides the best approach for identifying locations for future wetland preservation and restoration projects in the Lake Superior Basin of Douglas County. Following is a summary of the key information utilized to identify and prioritize watersheds based on the landscape prioritization criteria developed through this project (Fig. 2).

Within the HUC 12 watersheds in the Lake Superior Basin, the subwatersheds (HUC 14) listed as Tier 1 and Tier 2 represent the areas with the highest need for restoration and preservation of wetland functions (Fig. 34). Subwatershed criteria for wetland preservation and restoration criteria includes the following:

- Watersheds (HUC 12) estimated to have 15% or more wetland loss (Fig. 35)
- Tier 1 priority subwatersheds (HUC 14) with 40% or greater open land cover (Fig. 36)
- Tier 2 priority subwatersheds (HUC 14) with 30% or greater open land cover (Fig. 36)

<table>
<thead>
<tr>
<th>Watershed (HUC 12)</th>
<th>Wetland Loss (%)</th>
<th>Tier 1 Number subwatersheds (HUC 14) > 40% open land</th>
<th>Tier 2 Number subwatersheds (HUC 14) 30-40% open land</th>
<th>Total number of subwatersheds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bardon-Pearson Creeks</td>
<td>26.5</td>
<td>15</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Poplar River</td>
<td>21.1</td>
<td>4</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Lower Amnicon River</td>
<td>20.8</td>
<td>6</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Copper Creek</td>
<td>18.5</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Upper Brule River</td>
<td>18.4</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Lower Nemadji River</td>
<td>16.7</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Balsam Creek</td>
<td>15.4</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Lower Brule River</td>
<td>15.4</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2. List of Lake Superior Basin HUC 12 watersheds with greater than 15% wetland loss, number of subwatersheds with more than 30% open land and total number of subwatersheds within each watershed.

Based on the information developed through the wetland assessment, there are three watersheds that have experienced 20% or more wetland loss and have at least one subwatershed with more than 40% open land cover: Bardon-Pearson Creeks, Poplar River and the Lower Amnicon River. Within the Bardon-Pearson
Creek watershed there are fifteen subwatersheds that are at least 40% open land and are listed under Tier 1 (Table 2). The land cover map (Fig. 8) shows that agricultural land represents a large component of the open lands, with forest harvest the next most prevalent. Similar patterns can be seen in the Poplar and Lower Amnicon River watersheds. Balsam Creek, Copper Creek, the Lower Nemadji River, the Lower and Upper Brule watersheds are estimated to have lost 15-20% of their former wetland area and have at least one subwatershed with greater than 40% open land cover. While the Little Brule River watershed was estimated to have greater than 15% wetland loss it did not have any subwatersheds with more than 30% open land cover. The Tier 2 watersheds are estimated to have greater than 15% wetland loss and 30-40% open land cover (Table 2, Fig. 36).

Balsam Creek, Copper Creek, the Lower Nemadji and the Lower South Fork Nemadji River are watersheds (HUC 12) within the Nemadji River Sub-basin (the Lower South Fork of the Nemadji River was not included in this prioritization since only a small portion of the watershed is located in Wisconsin). Watershed-wide planning efforts are currently being coordinated between the two states in order to strategically address the issue of surface water runoff from the headwaters to Superior Bay, where excess sediment is dredged annually from shipping channels. A Nemadji River Basin Project completed by NRCS in 1998 developed a sediment budget that estimated the annual sediment contribution from this watershed to be 127,000 tons of sediment per year (NRCS, U.S. Forest Service, 1998). Updated models are being currently developed and will be utilized in future planning efforts.

Recommendations for implementing a watershed approach to wetland management

The subwatersheds listed in Table 2 represent the greatest need for wetland restoration and preservation based on the prioritization criteria identified. However, the entire HUC 12 watersheds in which they are located should also be considered a high priority for wetland restoration and preservation. Since wetland restoration and preservation are dependent on the availability of public land and/or willing landowners the inclusion of the larger watershed area would provide additional opportunities for locating wetland projects that would provide the greatest benefits within these watersheds. In addition, the historic information on wetland loss suggests that all Lake Superior Basin watersheds would benefit from the preservation and restoration of surface water detention wetlands to improve watershed health.

Farmland preservation has community and economic significance for Douglas County and conservation of existing farmland is an important consideration when evaluating potential wetland restoration sites. Historic information shows a pattern of smaller wetlands on the landscape that provided surface water retention at multiple locations in the drainage network. This supports the concept of smaller restoration sites that could potentially be located adjacent to current active agricultural areas rather than converting the farmland itself. Wetland restoration projects in the region have demonstrated that transitional agricultural areas have a high restoration potential when surface water drainage patterns are re-established. This should be an alternative approach to the current practice of developing large wetland mitigation banks on farmland that results in a cumulative loss of agricultural land.

Public and private lands that meet the criteria for either restoration or preservation, as described by the subwatershed criteria on pg. 43, will be compiled and utilized to develop a request for landowner participation. A listing of landowners who may be interested in developing wetland projects on their land will be developed, additional site-level criteria will be used to evaluate parcel suitability and
recommendations will be finalized and approved by the appropriate entities. Sites meeting the criteria will be eligible for wetland restoration and protection projects as funding becomes available. Project site location criteria will include, at a minimum, an evaluation of the following landscape/land use characteristics:
For wetland restoration, site-level criteria will include, at a minimum, all identified potentially restorable wetland areas that:
- are located on or adjacent to transitional agricultural land
- have identified pour points and catchments that intersect highways and roads
- have a direct hydrologic connection to streams and rivers
- are adjacent to current wetlands with significant surface water detention function
- are adjacent to public land currently managed for conservation and/or preservation of unique habitats
For wetland preservation, site-level criteria will include, at a minimum:
- current wetlands with moderate to high function for storm water detention (SWD), especially in the headwaters and floodplain areas in all Lake Superior Basin watersheds of Douglas County.
- current wetlands adjacent to public land currently managed for conservation and/or preservation of unique habitats

Through this prioritization process subwatersheds at the highest risk of increased runoff have been identified and would be the focus of future funding for wetland mitigation projects including restoration, preservation, enhancement, riparian buffers and land conservation management within the Lake Superior Basin clay plain region. This improved data provide more accurate estimates of wetland acreage loss. However, more detailed hydrologic information is needed for site-level determination of locations for future wetland projects.

Several key land conservation and management strategies have been identified that should be implemented to address the watershed goal of reduction in surface water runoff. They include:
- managing timber harvests to maintain a minimum of 40% forest cover in watersheds (HUC 14)
- Implementation of wetland preservation and restoration projects in priority subwatersheds and the watersheds within which they are located.
- Implementation of stream and riparian/floodplain restoration and protection projects in priority locations identified as potentially restorable stream reaches.

This plan presents an opportunity to work with landowners, both public and private, to implement land management practices that will maintain a strong agricultural community, improve watershed health, reduce the risks associated with flooding and other large precipitation events, and improve the overall resiliency of Douglas County communities to climate change. In order to address the watershed issue of increased surface water runoff the land management strategies recommended in this watershed-based plan have been approved by the Land and Water Conservation Committee as a goal to be added to the 2010-2020 Land and Water Resource Management Plan. In addition, recommendations from this plan will be coordinated with other Douglas County plans that include Comprehensive Land Use, Farmland Preservation, Hazard Mitigation and Forestry Planning. These strategies should be based on the currently available land cover/land use data and should be updated every five years.
Since wetland restoration and preservation are dependent on the availability of public land and/or willing landowners the inclusion of the larger watershed area would provide additional opportunities for locating wetland projects that would provide the greatest benefits within these watersheds. In addition, the historic information on wetland loss suggests that all Lake Superior Basin watersheds would benefit from the preservation and restoration of surface water detention wetlands to improve watershed health.

Farmland preservation has community and economic significance for Douglas County and conservation of existing farmland is an important consideration when evaluating potential wetland restoration sites. Historic information shows a pattern of smaller wetlands on the landscape that provided surface water retention at multiple locations in the drainage network. This supports the concept of smaller restoration sites that could potentially be located adjacent to current active agricultural areas rather than converting the farmland itself. Wetland restoration projects in the region have demonstrated that transitional agricultural areas have a high restoration potential when surface water drainage patterns are re-established. This should be an alternative approach to the current practice of developing large wetland mitigation banks on farmland that results in a cumulative loss of agricultural land.
Literature Cited

Thostenson, K. 2014. Stakeholder Experiences in Collaborative Learning. Graduate Internship, Nelson Institute of Environmental Studies, Madison, WI.

Wilkens, S. 2013. Community-based Wetland Management: Collaborative Learning and Assessment In Douglas County, Wisconsin. Nelson Institute for Environmental Studies, University of Wisconsin, Madison, WI.

Wisconsin Initiative on Climate Change Impacts (WICCI). 2011. Wisconsin’s Changing Climate: Impacts and Adaptation. Nelson Institute for Environmental Studies, University of Wisconsin-Madison and the Wisconsin Department of Natural Resources WI.

Wisconsin Department of Natural Resources (WDNR). 2014. The ecological landscapes of Wisconsin: an assessment of ecological resources and a guide to planning sustainable management. Wisconsin Department of Natural Resources, PUB-SS-1131 2014, Madison

Wisconsin Wetland Conservation Trust In-Lieu Fee Mitigation Program Instrument. 2014. Wisconsin Department of Natural Resources.